pH-sensitive K+ channels in the distal nephron
نویسندگان
چکیده
منابع مشابه
Potassium secretion and the regulation of distal nephron K channels.
K-selective channels in the luminal membranes of distal nephron segments form a key pathway for the secretion of K ions into the urine. This process is important to the control of K balance, particularly under conditions of normal or high K intake. This brief review will cover three issues: 1) the identification of apical K channels, 2) the role of these channels in the maintenance of K homeost...
متن کاملCl- channels of the distal nephron.
Cl- currents were observed under whole cell clamp conditions in cells of the rat cortical collecting duct (CCD), connecting tubule (CNT), and thick ascending limb of Henle's loop (TALH). These currents were much larger in intercalated cells compared with principal cells of the CCD and were also larger in the TALH and in the CNT compared with the CCD. The conductance had no strong voltage depend...
متن کاملHigh-conductance K channels in intercalated cells of the rat distal nephron.
High-conductance (BK or maxi) K(+) channels were observed in cell-attached patches of the apical membrane of the isolated split-open rat connecting tubule (CNT). These channels were quite rare in cells identified visually as principal cells (PCs; 5/162 patches) but common in intercalated cells (ICs; 24/26 patches). The BK-expressing intercalated cells in the CNT and cortical collecting duct (CC...
متن کاملTaste receptor cells express pH-sensitive leak K+ channels.
Two-pore domain K+ channels encoded by genes KCNK1-17 (K2p1-17) play important roles in regulating cell excitability. We report here that rat taste receptor cells (TRCs) highly express TASK-2 (KCNK5; K2p5.1), and to a much lesser extent TALK-1 (KCNK16; K2p16.1) and TASK-1 (KCNK3; K2p3.1), and suggest potentially important roles for these channels in setting resting membrane potentials and in so...
متن کاملMolecular physiology of pH-sensitive background K(2P) channels.
Background K(2P) channels are tightly regulated by different stimuli including variations of external and internal pH. pH sensitivity relies on proton-sensing residues that influence channel gating and activity. Gene inactivation in the mouse is a revealing implication of K(2P) channels in many physiological functions ranging from hormone secretion to central respiratory adaptation. Surprisingl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nephrology Dialysis Transplantation
سال: 1993
ISSN: 1460-2385,0931-0509
DOI: 10.1093/ndt/8.6.488